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The plane wave propagating in e!ective chiral (isotropic, non-centrosymmetric) materials
had been asymptotically investigated. They can be constructed by embedding structural
chiral microstructures in a host medium, and six independent wavenumbers can hence be
observed from the dispersion equations. Two of the wavenumbers represent the
non-dispersive longitudinal waves while the remaining four represent the dispersive
circularly polarized shear waves. The dispersion equations also indicate that two transition
frequencies divide the frequency spectrum of the transverse wavenumbers into three di!erent
groups and the four transverse mode can only be distinguished in a speci"ed frequency
range. To continue our previous research, the "eld equations governing the harmonic
motions at the achiral}chiral interface are written as a matrix form to solve the re#ected and
transmitted wave "elds. Numerical results show that the P-, SV-, and SH-waves are coupled
together when an elastic shear wave is incident at the achiral}chiral interface. Meanwhile,
the two coupled transverse waves, i.e., the LCP and RCP plane waves, will degenerate to
a linearly transverse plane wave when the shear wave is incident normally. The phenomenon
may explain why the mode conversion due to the chirality is particularly enhanced between
the "rst and second transition frequencies.

( 2000 Academic Press
1. INTRODUCTION

Chiral media, due to the lack of geometric symmetry between an object and its mirror
image, have long been known in optics under the more common name of optically active
materials. They are characterized by an intrinsic left- or right-handedness at optical
frequencies, due to a helical natural structure, and hence cannot be made to coincide with
the object itself by any operation involving rotations and/or translations. Therefore, waves
of di!erent circular polarization propagate in these media at di!erent phase velocities. As
a result, a linearly polarized electromagnetic wave incident at a chiral medium emerges with
its plane of polarization rotated about its direction of propagation [1].

Since the electromagnetic waves can discriminate the chirality of objects, there is no
reason that other transverse waves cannot do so. In general, the "elds in elastic solid consist
of both transverse and longitudinal components, and therefore an elastic wave should be
able to sense the chirality also. Because of this, the wave "eld of the structural chiral media
and the e!ective chiral materials had been asymptotically investigated [2}4]. The linear
theory for non-centrosymmetric, isotropic (hemitropic) micropolar media or mechanical
active solids was developed by Aero and Kuvshinskii [5] Erigen [6] and Nowacki [7]. They
reported that the continuum is composed of randomly arranged springs, is isotropic
0022-460X/00/300777#22 $35.00/0 ( 2000 Academic Press
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concerning any proper orthogonal transformations but not with respect to re#ections, and
hence the microstructure possesses a screw-like property, or a handedness. Such a medium
undergoing a homogeneous deformation can support couple stresses and spin inertia.
Therefore, micropolar solution in solid mechanics results in both the displacement "eld and
the orientational "eld. From our previous work [2], it is known that an e!ective chiral
medium can be constructed by embedding structural chiral microstructures in a host
matrix. Such a material is mirror asymmetric or chiral; therefore, six independent
wavenumbers are possible. Two of the wavenumbers represent non-dispersive longitudinal
"elds, while the remaining four are dispersive circularly polarized transverse "elds.
Meanwhile, the dispersion equations of the transverse "eld also indicate that two transition
frequencies divide the frequency response of the transverse wavenumbers into three di!erent
groups, and hence the four transverse modes can only be distinguished in a speci"ed
frequency range. Thus, the microstructural size of the e!ective chiral material will be
su$ciently large compared to the transverse wavelength so that an incident elastic shear
wave can sense its chirality, while the microstructural size could be adequately small so that
the material is e!ectively chiral.

The subject of re#ection and transmission of plane waves at an interface between two
semi-in"nite media, in welded contact, has been discussed by various authors [8}12]. The
re#ection of plane wave from the #at boundary of micropolar elastic half-space was
discussed by Par"tt and Eringen [8] in 1969. Then Tomar and Gogna extended the
investigation to a longitudinal microrotational wave [9] and a longitudinal displacement
wave [10] impinging at a plane discontinuity between two micropolar elastic solids in
welded contact. Simultaneously, Lakhtakia et al. [11, 12] presented a nice theoretical model
concerning the re#ection phenomena when an incident plane wave is propagating at the
interface between the elastic solid and the chiral material. To continue our previous
research, this paper studies the propagation of elastic transverse waves at the achiral}chiral
boundary. It should be noted that although this paper deals with a similar problem related
to reference [11], the following contributions can be found in this paper:

1. The dispersion equations indicate that two transition frequencies divided the
frequency spectrum of the transverse wavenumbers into three di!erent groups and the
four transverse modes can only be distinguished in a speci"c frequency range (Figure
1). This unique result may explain why the microstructural size of the e!ective chiral
material should be su$ciently large compared to the transverse wavelength so that an
incident elastic plane wave can sense its chirality while the microstructural size could
be adequately small so that the material is e!ective chiral. Therefore, our numerical
analysis concentrates on the phenomenon of the two transition frequencies found only
in our previous work. The results obtained in this paper are useful in designing and
fabrication the e!ective chiral samples.

2. The material constants used in our paper are di!erent from those used in reference
[11]. In reference [11], the acoustic impedance Z is given as Z"oC

L
"

o]J(j#2k)/o"1200]95742"1)14]106 kg/sm2 , where j and k are ¸ame'
constants. This value is close to that for water. However, the Poisson's ratio
(l"j/2(j#k)"0)31) indicates that this is a hard material. Thus, the material is too
hard to be used as an anechoic coating. For the applications in anechoic coating, the
composite may be fabricated by embedding the helical arrangement of
microstructures, for instance, the structural chiral inclusions or springs, in the soft
matrix (such as soft rubber used in many practical applications). To ensure that the
chiral e!ect can be found in the samples, we proposed a hypothesis about the material
constants to characterize the e!ective chiral composites in references [2, 4].



Figure 1. The wavenumbers as functions of the frequency [2]. The material moduli are listed in Table 1.

TABLE 1

¹he material constants for the isotropic elastic
solid and the chiral solid

Isotropic elastic solid [13] Chiral solid [2, 4]

o
1
"970 kg/m3 o

2
"1012 kg/m3

j
1
"1343)8 MPa j

2
"2124)7 MPa

k
1
"61)8 MPa k

2
"204 MPa

a"3]106N
b"3]106N
c"4]106N

C
3
"16]106 N/m

J"0)01 m2
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Considering the general composite theory and the non-negative free energy, we choose
a set of moduli shown in Table 1 to calculate the wave "elds at the achiral}chiral
interface. Note that the values of j

2
and k

2
are measured in reference [4]. The acoustic

impedance is then Z"1)6]106 kg/sm2 and the Poisson's ratio is l"0)47.
3. To understand the chirality in the transmitted "eld, large numerical result and

discussions are given in this paper. The numerical results are plotted in polar plots that
are very useful in studying the transmission phenomena at an interface. In addition,
the transmitted "eld is more complicated than the re#ected "eld due to the extra mode
conversion in the chiral material, while the transmitted "eld had never been actually
solved or mentioned in reference [11]. The power pro"les of the transmitted "eld
obtained in this paper reveal that the chirality is enhanced between the "rst and
second transition frequencies. We conclude that the embedded handed
microstructures may be properly chosen such that the composite is e!ectively chiral at
a speci"ed frequency range.

4. The energy conservation of the total wave "eld is derived in our paper. The power
pro"les in the transmitted "eld (the chiral medium) would o!er a better understanding
about chirality. Without that, the wave propagation in the transmitted "eld is highly
obscure.
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Furthermore, the mode conversion due to the chirality from the achiral}chiral interface, the
coupled phenomena based on the similar wavenumbers of the RCP and LCP plane waves,
and the over-determined boundary conditions as mentioned in reference [11], are discussed
in detail.

2. CONSTITUTIVE AND WAVE EQUATIONS FOR THE CHIRAL MEDIUM

It is demonstrated that the acoustic wave can also sense the handedness of a chiral
medium and an acoustically chiral composite can be constructed by embedding structural
chiral microstructures or springs in a host medium [2}4]. The elastodynamic motion of
such a material is derived based on the following equations [6, 11]:

conservation of linear momentum:

p
ij, i

#X
j
!ouK

j
"0; (1)

conservation of angular momentum:

e
jik

p
ik
#m

ij, i
#>

j
!JuK

j
"0; (2)

constitutive equations:

p
ij
"ju

k,k
d
ij
#k (u

i,j
#u

j, i
)#C

3
u
j, i

, (3)

m
ij
"au

k,k
d
ij
#bu

i, j
#cu

j, i
#C

3
u
j, i
!C

3
e
ijk

u
k
, (4)

where p
ij

is the stress tensor, X
j
is the body force, o is the mass density of the material, u

j
is

the displacement vector, e
jik

is the permutation symbol, m
ij

is the couple stress tensor, >
j
is

the body moment, u
j
is the microrotation vector, J is the polar moment of inertia, j, k, a, b,

c, and C
3
are the material moduli, and d

ij
is the Kronecker delta. Since the internal energy is

non-negative, the following inequalities are modi"ed from reference [14], i.e.,

k*0, (3j#2k)*0, (3a#b#c)*0, !c)b)c, c*0,

C2
3
)8kc,

C2
3

4(3j#2k) (3a#b#c)
)1. (5)

According to the Helmholtz theorem, any vector "eld can be expressed as the sum of the
gradient of a scalar "eld and the curl of a vector "eld:

u"$U#$]w, $ )w"0, (6)

u"$m#$]H, $ )H"0, (7)

where U, m and w, H are the scalar and vector potentials respectively. Substitution of
equations (6) and (7) into equations (3) and (4) leads to the scalar and vector wave equations
respectively. They are

(j#2k)$2U#C
3
$2m"oUG , (8)

(a#b#c)$2m#C
3
$2U"JomG , (9)
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k$2w#C
3
$2H"owG , (10)

c$2H#2C
3
$]H#C

3
$2w"JoHG . (11)

Most studies about the propagating elastic wave are concerned with an incident
harmonic plane wave. The plane wave problems are not only mathematically less complex,
but are also a good approximation of many physically meaningful problems. Since this type
of incident wave is important, we shall recapitulate the harmonic plane waves propagating
in the x}y plane, and may be described as

MU, m, w, HN"MU3, m3, w3, H3N exp [ik(n ) r)]. (12)

Here U3 and m3 are amplitudes, w3 and H3 denote the constant vectors, k is the wavenumber,
r is the position vector, and n indicates a unit vector in the direction of propagation. For
brevity in writing it would be assumed, throughout a paper, that it is as a rule to omit the
exp(!iut) time dependence, where u is the angular velocity. Substituting equation (12) into
equations (8) and (9), one has

[(j#2k)(a#b#c)!C2
3
]k4!ou2[J (j#2k)#a#b#c]k2#Jo2u2"0. (13)

Equation (13) means that there are two sets of coupled non-dispersive longitudinal
displacement waves and longitudinal microrotation waves travelling with wavenumbers
k
1

and k
2

in the chiral solid. Similarly, by substituting the "elds' variables (12) into
equations (10) and (11), we obtain the dispersion equation as follows:

[(Jou2!k2c)(ou2!kk2)!C2
3
k4]2![2C

3
k (kk2!ou2)]2"0. (14)

The consequence indicates four sets of coupled dispersive transverse displacement waves
and transverse microrotation waves travelling with wavenumbers k

3
to k

6
, which

characterize two sets of the coupled left circularly polarized (LCP) waves and two sets of the
coupled right circularly polarized (RCP) waves. Hence, when the plane wave travels on the
x}z plane, the coupled RCP and LCP plane waves are given as

H
R
"H

R
( in

1
e
x
#e

y
!in

3
e
z
)exp[ik (n

1
x#n

3
z)], (15)

H
L
"H

L
(!in

1
e
x
#e

y
#in

3
e
z
)exp[ik (n

1
x#n

3
z)], (16)

In equations (15) and (16), the subscript &&R11 means the RCP plane wave, &&¸'' denotes the
LCP plane wave, and the unit Cartesian vectors have been denoted by e

x
, e

y
, and e

z
. It

should be mentioned that the RCP and LCP plane waves propogate in the chiral medium at
di!erent phase velocities.

3. WAVE FIELDS FOR ACHIRAL}CHIRAL PROBLEM

For an obliquely incident plane wave, the "eld representations for the planar two
semi-in"nite samples can be illustrated by Figure 2. Figure 2 can be divided into two
regions: one of them, region z)0, is an elastic half-space that does not exhibit chirality with
the mass density o

1
, and the ¸ame' constants j

1
and k

1
. The other one, region z*0, is

a chiral medium (whose elastic parameters are the mass density o
2
, the polar moment of

inertia J, and the material moduli j
2
, k

2
, a, b, c, C

3
). In Figure 2, the SV-wave (vertical shear



Figure 2. Re#ection and transmission of the incident shear plane wave.
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wave), and SH-wave (horizontal shear wave) represent the incident and re#ected wave types
in the elastic (achiral) solid; P1 and P2 denote the two non-dispersive longitudinal plane
waves, and the S3, S4, S5, and S6 indicate the four sets of coupled dispersive transverse
plane waves in the chiral solid. Hence, consider the incident SV-wave, or SH-wave, the
complete problem of re#ection and transmission of elastic waves on the interface between
an achiral solid and a chiral solid are de"ned as a series of potential functions of the form
given in equations (17)}(23). Consequently, to satisfy the boundary conditions at the
interface z"0, the incident transverse (SV or SH) wave of wavenumber k

s
at the angle

h
1

with the interface, will result in

(1) a re#ected longitudinal displacement wave travelling with wavenumber k
L
at an angle

of h
2
,

(2) a pair of re#ected transverse displacement waves travelling with the same
wavenumber k

S
at an angle of h

3
,

(3) two transmitted longitudinal displacement waves coupled with the longitudinal
microrotational waves travelling with wavenumbers k

1
and k

2
at the angles of a

1
and

a
2
, respectively, and

(4) four sets of transmitted transverse displacement waves coupled with transverse
rotational waves in the angles of a

3
to a

6
at wavenumbers k

3
to k

6
respectively.

Therefore, there are nine unknown coe$cients involved in the re#ected and transmitted
"elds. Although the amplitude and direction of the propagating waves are varied in the two
media, the wave equations and the boundary conditions at the interface can be satis"ed by
assuming that the re#ected and transmitted waves are still plane waves. Therefore, the
incident and re#ected plane waves, in general, are given by

wI1"(tI
1
e
x
#tI

2
e
y
!tan h

1
tI

1
e
z
)exp[ik

S
(sin h

1
x#cos h

1
z)], (17)

UR1"UR exp[ik
L
(sin h

2
x!cos h

2
z)] (18)
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and

wR1"(tR
1
e
x
#tR

2
e
y
#tan h

3
tR
1
e
z
)exp[ik

S
(sin h

3
x!cos h

3
z)]. (19)

Similarly, in the chiral region, the appropriate representations of the "eld consistent with
Snell's laws in the chiral medium are given by

UT2"
2
+
q/1

UR
q

exp[ik
q
(sin a

q
x#cos a

q
z)], (20)

mT2"
2
+
q/1

D
q
UT

q
exp[ik

q
sin a

q
x#cos a

q
z)], (21)

wT2"
6
+
q/3

D
q
HT

q
(D1

q
e
x
#D2

q
e
y
#D3

q
e
z
)exp[ik

q
(sin a

q
x#cos a

q
z)], (22)

HT2"
6
+
q/3

HT
q
(D1

q
e
x
#D2

q
e
y
#D3

q
e
z
)exp[ik

q
(sin a

q
x#cos a

q
z)]. (23)

In these equations, U's, H's and t's are the amplitudes to be determined by the boundary
conditions, and k

L
, k

S
, and k

q
are the wavenumbers of the corresponding waves. For the

convenience of the ensuing discussion, the potentials associated with the incident wave are
designated by a superscript &&I1''; those with re#ected wave by &&RI''; and those with the
transmitted waves by &&¹2''. It must be mentioned that the formula of D

q
can be found in

reference [2], i.e.,

D
q
"

ou2!k2
q
(j

2
#2k

2
)

k2
q
C

3

, for q"1, 2, (24a)

and

D
q
"

k2
q
C

3
ou2!k

2
k2
q

, for q"3}6. (24b)

The presentation of D1
q
, D2

q
and D3

q
is based on equations (15) and (16), and may be written as

D1
q
:D2

q
:D3

q
"$i cos a

q
: 1 :Gi sin a

q
, (25)

in which the upper signs &&#'' in D1
q

and &&!'' in D3
q

refer to the RCP plane waves, and the
lower signs &&!'' in D1

q
and &&#'' in D3

q
to the LCP plane waves.

For a complete description of the problem, nine boundary conditions are needed for
solving the nine unknown re#ected and transmitted coe$cients. Six of the boundary
conditions come from the assumption of the continuity for all components of the
displacement u and traction vectors s at z"0, i.e.,

uI1#uR1"uT2, (26)

e
z
) (sI1#sR1)"e

z
) sT2. (27)

The remaining three conditions may be chosen by considering the continuity of the
microrotation and couple stress. Since the di!erence between the theory of micropolar
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elasticity and that of the classical elasticity are the introduction of the microrotation u and
couple stress m; therefore, when a wave is propagating at a chiral}chiral interface, both the
microrotation and couple stress are continuous at the interface [9, 10]. The microrotation
moduli (a, b, c) and chiral parameter (C

3
), however, are null on the achiral surface, so there

are no microrotation and couple stress at the achiral}chiral interface [11, 12], i.e.,

wT2"0, (28)

e
z
)mT2"0. (29)

Only one of the equations (28) or (29) is necessary for the remaining three conditions;
otherwise, an over-determined problem will be generated. In the following derivation, we
de"ne the boundary conditions A containing equations (26)} (28), as well as boundary
conditions B to equations (26), (27), and (29). The two sets of conditions shall be discussed
separately in this paper. In 1994, Elphinstone [12] reported that the anomalous behavior is
in#uenced by the sets of the boundary conditions used, but none of them resists the
principle of conservation of energy. Thus, experimentation is necessary to decide which of
the boundary conditions, null of the microrotation or null of the couple stress, is physically
relevant in the chiral medium.

Using equations (17)} (23) and the boundary conditions, which leads to a system of nine
simultaneous algebraic equations, and can be written as a matrix formula,

[E]MXN"[F]M>N, (30)

where [E] is a 9]9 complex matrix, [F] is a 9]2 matrix, and MxN, M>N are de"ned by

MXN"MUR, tR
1
, tR

2
, UT

1
, UT

2
, HT

3
, HT

4
, HT

5
, HT

6
NT, (31)

M>N"MtI
1
, tI

2
NT (32)

with¹* being transpose of the matrix. Hence, M>N contains known incident coe$cients, and
MXN contains three unknown re#ected coe$cients and six unknown refracted coe$cients
and six unknown refracted coe$cients. For convenience of calculation, the re#ected and
transmitted coe$cients can be explicitly expressed using the relationship MXN"
[E]~1[F]M>N.

In this analysis, there are two special cases of the incident plane-polarized waves in M>N
considered here, i.e.,

(1) SV-wave:

tI
2
"1, tI

1
"0; (33a)

(2) SH-wave:

tI
1
"1, tI

2
"0. (33b)

Furthermore, equations (17)} (23) satisfy the boundary conditions at z"0, if

k
S
sin h

1
"k

L
sin h

2
"k

S
sin h

3
"k

1
sin a

1
"k

2
sin a

2
"2, (34)

which is the well-known Snell's law.
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4. NORMALIZED POWER DENSITIES

We now consider the partitioning of energy between the di!erent re#ected and
transmitted waves in the achiral}chiral interface. The mechanical power is the product of
the surface traction and the particle velocity during displacement and the surface moment
and particle velocity during rotation, i.e.,

pL "p
ij
n
i
uR
j
#m

ij
n
i
uR
j
. (35)

Using equations (17)}(23) and eliminating the remaining time dependence by time averages
over the period, the normalized mechanical power density for an incident SV- or SH-wave is
given as

1"
tan h

1
tan h

2
A
UR

tI
2
B
2
#CA

tR
2

tI
2
B
2
#A

tR
2

tI
2
B
2
sec2h

3D

#

2
+
q/1

k3
q
NL

q
cos a

q
k3
S
k
1
cos h

1
A
UT

q
tI
2
B
2
#

2
+
q/3

k3
q
NS

q
cos a

q
k3
S
k
1
cos h

1
A
HT

q
tI
2
B
2
, (36)

and

1"
sin h

1
cos h

1
tan h

2
A
UR

tI
1
B
2
#CA

tR
2

tI
1
B
2
sec2 h

3
#A

tR
2

tI
1
B
2

D

#

2
+
q/1

k3
q
NL

q
cos a

q
k3
S
k
1
sec h

1
A
UT

q
tI
1
B
2
#

2
+
q/3

k3
q
NS

q
cos a

q
k3
S
k
1
sec h

1
A
HT

q
tI

1
B
2
, (37)

where

NL
q
"j

2
#2k

2
#2C

3
D

4
#(a#b#c) (D

q
)2 (38)

and

NS
q
"2[k

2
(D

q
)2#c#2C

3
D

q
#DC

3
k~1
q

]. (39)

Note that the elastic moduli Ma, b, c, C
3
N vanish in the medium z'0, and thus the

problem reduces to the situation of re#ection and transmission from an achiral-achiral
interface. With the assumption, the normalized power densities (36) and (37) may reduce to

1"
tan h

1
tan h

2
A
UR

tI
2
B
2
#A

tR
2

tI
2
B
2
#

o
2
tan h

1
o
1
tan a

1
A
UT

tI
2
B
2
#

o
2
tan h

1
o
1
tan a

2
A
tT

2
tI
2
B
2

(40)

and

1"A
tR
1

tI
1
B
2
#

o
2
k
s2

cos h
1

o
1
k
s1

cos h
2
A
tT
1

tI
1
B
2
. (41)
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5. SPECIAL CASE: NORMALLY INCIDENT TRANSVERSE WAVE

We shall here study the "eld behavior of a normally incident transverse wave at a planar
achiral}chiral boundary, i.e., h

1
"0. Consider the situation in Figure 1 where the incident

plane wave travels in the #z direction, and the boundary surface is in the plane of z"0.
Consequently, substituting equations (17)} (23) into the boundary conditions (26) and (27),
one obtains

k
s
tR

2
#

6
+
q/3

D
q
k
q
HT

q
"k

S
tI
2
, (42)

k
s
tR

1
#

6
+
q/3

D
q
k
q
D1
q
HT

q
"k

S
tI
1
, (43)

k
L
UR#

6
+
q/3

k
q
UT

q
"0, (44)

!k
1
k2
S
tR

2
#

6
+
q/3

k2
q
(k

2
D

q
#C

3
)HT

q
"k

1
k2
S
tI
2
, (45)

!k
1
k2
S
tR

1
#

6
+
q/3

D1
q
k2
q
(k

2
D

q
#C

3
)HT

q
"k

1
k2
S
tI

1
, (46)

!(j
1
#2k

1
)k2

L
UR#

6
+
q/3

k2
q
(j

2
#2k

2
#D

q
C

3
)UT

q
"0. (47)

Similarly, using boundary conditions (28), one obtains

6
+
q/3

k
q
HT

q
"0, (48)

6
+
q/3

k
q
D1

q
HT

q
"0, (49)

2
+
q/1

k
q
D

q
UT

q
"0, (50)

or using conditions (29), one obtains

6
+
q/3

[k2
q
(c#D

q
C

3
)!iC

3
k
q
D1

q
]HT

q
"0, (51)

6
+
q/3

[k2
q
D1
q
(c#D

q
C

3
)#iC

3
k
q
]HT

q
"0, (52)

2
+
q/1

k2
q
[(a#b#c)D

q
#C

3
]UT

q
"0. (53)
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For the case of the normally incident transverse wave, equations (44) and (47) together with
equations (50) or (53) constitute a homogeneous system of equations of three unknowns.
Since the determinate of the coe$cient matrix is non-zero, the computations from Cramer's
rule [15] imply that

UR"UT
1
"UT

2
"0. (54)

Equation (54) implies that when a transverse plane wave is normally incident at the interface
z"0, the longitudinal waves will disappear from media 1 and 2. It means that only the
transverse waves exist in the re#ected and transmitted "elds. Consequently, the normalized
power densities are then modi"ed to

1"A
tR
2

tI
2
B
2
#A

tR
1

tI
2
B
2
#

6
+
q/3

NS
q
k3
q

k
1
k3
S
A
tT
q

tI
2
B
2

(55)

and

1"A
tR

12
tI
1
B
2
#A

tR
2

tI
1
B
2
#

6
+
q/3

NS
q
k3
q

k
1
k3
S
A
HT

q
tI

1
B
2
. (56)

6. NUMERICAL RESULTS AND DISCUSSION

In order to solve the complete problem of the re#ection and transmission of elastic shear
waves at the achiral}chiral interface, the material constants of the two speci"c media listed
in Table 1 will be used in the calculation. In the forthcoming section, the following notations
are used to represent the re#ected and transmitted characteristics:

pX
Z,Y

, (57)

where p is the square root of the normalized power density. In equation (57), Z"R or
¹ denotes the re#ected or transmitted "eld, X and >"P, SV, and SH represent the
incident and re#ected wave types in the elastic solid, and >"MP1, P2, S3, S4, S5, S6N
describes the transmitted wave types in the chiral medium.

In our previous study [2] (see Figure 1), the dispersion equation indicates that there are
four dispersive circularly polarized transverse waves propagating in the chiral medium: two
RCP plane waves (S3 and S5) and two LCP plane waves (S4 and S6), respectively. Notably,
the S4- and S5-waves are close together at frequencies lower than 90 Hz and only three
models of the wavenumbers can be found; in the 90 Hz}12 kHz frequency range, four
wavenumbers can be found clearly; when the frequency is higher than 12 kHz, S3-, S4- and
S5-, S6-waves are coupled together, respectively. This observation would lead to di!erent
states of the waveforms in the chiral materials. Hence, the two transition frequencies (90 Hz
and 12 kHz), properly so called, divide the frequency domain into three groups and the four
transverse models can only be distinguished at the speci"ed frequency range. The coupled
phenomena mentioned above are also true for wave propagation at the achiral-chiral
interface no matter what boundary condition, A or B, is used.

The computed values of the amplitude as functions of the frequency when an SV-wave is
normally incident (h

1
"0) at the achiral}chiral boundary are shown in Figure 3. From

equation (54), it is clear that no longitudinal waves can be found in both the re#ected and
transmitted "elds; therefore, the values of UR

1
, UT

1
, and UT

2
vanish in this "gure. Meanwhile,

the zero of tR
1

as shown in Figure 3 implies the vanishing of the re#ected SH-wave in this



Figure 3. The amplitude ratios of the re#ected and transmitted waves as functions of the frequency: (a)
boundary conditions A, (b) boundary conditions B. **, tR

2
; - - -, tR

1
; } } ) , HT

3
; } ) } , HT

4
; } ) ) } ; HT

5
, }2} , HT

6
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analysis. The consequence is identical to the classical elasticity: a normally incident
SV-wave only results in a re#ected SV-wave and hence no mode conversion occurs at the
achiral}chiral boundary. Figure 3 also indicates that the pro"les of HT

4
, HT

5
, and HT

6
have

similar tendencies at boundary conditions A and B: they start from the right-hand side of
the "gure with the "xed values, and degenerate into two groups: one for HT

3
, HT

4
and the

other or HT
5
, HT

6
. In addition, HT

4
, HT

5
, and HT

6
turn into zero at a frequency of 10 Hz. The

biggest di!erence between the two boundary conditions may be the distribution of HT
3
,

which has larger value at boundary conditions A, but induces a special characteristic from
negative to positive amplitudes at boundary conditions B. Physically, the interesting
phenomenon in Figure 3(b) means that HT

3
is 1803 out of phase at the value of 630 kHz. The

normalized power distributions of the re#ected and transmitted waves when an SV-wave is
normally incident are plotted in Figure 4. It is observed from Figure 4 that only the power
density pSV

R,SV
exists in the re#ected "eld due to the vanishing of the SH-wave as shown in

Figure 3. Meanwhile, the transmitted power densities of the boundary conditions A and
B obey the characteristics illustrated in Figure 1. It means that the S4 and S5 modes always



Figure 4. The normalized power densities of the re#ected and transmitted waves as functions of the frequency:
(a) boundary conditions A, (b) boundary conditions B.**, pSV

R,SV
; - - -, pSV

R,SH
; } } ) , pSV

T,S3
; } ) } , pSV

T,S4
; } ) ) } , pSV

T,S5
;

}2} , pSV
T,S6

.
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couple together and have similar power pro"les (pSV
T,S4

and pSV
T,S5

) at frequencies lower than
the "rst transition frequency; similar power pro"les (pSV

T,S3
, pSV

T,S4
and pSV

T,S5
, pSV

T,S6
) at

frequencies higher than the second transition frequency imply the coupled relations of the
S3, S4, and S5, S6 modes. Furthermore, the characteristic of S3-wave travelling from
negative to positive values at boundary conditions B implies that the value of pSV

T,S3
shown

in Figure 4(b) is zero at 630 Hz. Also shown in Figure 4(a) and 4(b) is that the power
densities of the re#ected and transmitted "eld are dominated by HT2

4
and HT2

5
at lower

frequencies and by HT2
5

and HT2
6

at higher frequencies.
In examining the direction change of a coupled transverse wave at a given point as

t changes, it is convenient to set z"0, and then the transmitted "eld of a normal incidence
can be expressed as

HT2
3,5

"HT
3,5

(e
x

sin ut#e
y
cosut), (58)

HT2
4,6

"HT
4,6

(!e
x

sinut#e
y
cos ut). (59)
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In equations (58) and (59), HT2
3

and HT2
5

are RCP plane waves, and HT2
4

and HT2
6

are LCP
plane waves. As ut increases from 0 through n/2, n, 3n/2, and a complete cycle of 2n, the tips
of the vectors RCP or LCP plane wave will trace a circular locus. As mentioned above, the
two circularly polarized waves HT2

4
and HT2

5
, due to the characteristic of their similar

wavenumbers at the lower frequencies, e.g., 10 Hz (as shown in Figure 1), hence degenerate
to a linearly polarized transverse wave propagating in the z direction. Figures 5(a) and 5(b)
are speci"ed as the polarization diagram of LCP (HT2

4
) and RCP (HT2

5
) plane waves

respectively, according to equation (58) and (59), and Figure 5(c) is a combination of 5(a)
and 5(b), where &&s'' denotes the starting point. It is observed from Figure 5(c) that the
coupled transverse wave oscillates only along the x direction. Similarly, at higher
frequencies, e.g., 50 kHz, the RCP (HT2

3
) and LCP (HT2

4
) plane waves will degenerate to

a linearly polarized transverse wave propagating in the z direction. Figures 6(a) and 6(b)
represent HT2

3
and HT2

4
respectively, and Figure 6(c) plots the result of 6(a) plus 6(b). Figure

7 is similar to Figure 6 when HT2
3

and HT2
4

are replaced by HT2
5

and HT2
6

. Both Figure 6(c)
in and 7(c) indicate that the two sets of RCP and LCP plane waves may degenerate to
linearly polarized plane waves that always oscillate along the y direction.

It is known that the transverse waves can discriminate the chirality of objects and the
characteristics of the two transition frequencies. To further demonstrate the phenomenon,
the re#ected and transmitted "elds of an incident SV-wave are calculated by considering
boundary conditions A and plotted in Figures 8 and 9 at 30 Hz, 1 kHz, and 30 kHz. In
Figure 6. Polarization diagrams for the sum of HT2
3

and HT2
4

in space quadrature at z"0 for f"50 kHz:
(a) RCP plane wave (HT2

3
), (b) LCP plane wave (HT2

4
), (c) a coupled transverse plane wave.

Figure 5. Polarization diagrams for the sum of HT2
4

and HT2
5

in space quadrature at z"0 for f"50 Hz:
(a) LCP plane wave (HT2

4
), (b) RCP plane wave (HT2

5
), (c) a coupled transverses plane wave.



Figure 7. Polarization diagrams for the sum of HT2
5

and HT2
6

in space quadrature at z"0 for f"50 kHz:
(a) RCP plane wave (HT2

5
), (b) LCP plane wave (HT2

6
), (c) a coupled transverse plane wave.

Figure 8. The normalized power densities of the re#ected waves for SV-wave incidence at the achiral}chiral
boundary. The boundary conditions A are used for: (a) 30 Hz, (b) 1 kHz, (c) 30 kHz.**, pSV

R,SV
; - - - , pSV

R,SH
; } ) } ,

pSV
R,P

.

WAVES AT EFFECTIVE CHIRAL MEDIUM 791



Figure 9. The normalized power densities of the transmitted waves for SV-wave incidence at the achiral}chiral
boundary. The boundary conditions A are used for: (a) 30 Hz, (b) 1 kHz, (c) 30 kHz. Left column: } } )} , pSV

T,S3
; } ) } ,

pSV
T,S4

; } ) ) } , pSV
T,S5

; }2} , pSV
T,S6

. Right column: - - - , pSV
T,P1

; } ) } , pSV
T,P2

.
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Figure 8, the "rst and second quadrants of the plots on the left denote the incident SV-waves
and the re#ected shear waves (SV- and SH-waves), and the plots on the right are the
re#ected longitudinal wave (P-wave). Also in Figure 9, the plots on the left represent
the transmitted transverse waves (S3- to S6-waves), an the plots on the right describe the
transmitted longitudinal waves (P1- and P2-waves). All the power densities in polar plot are
functions of the incident angle. It is observed that the trend of the re#ected power-density
pro"les (i.e., pSV

R,SV
, pSV

R,SH
, and pSV

R,P
shown in Figure 8) is the same for the three speci"ed

frequencies if the incident angle is lower than 223. From the pro"les, evidently the
pSV
R,SV

starts with a "xed value when h
1
"03; as h

1
increases, it diminishes at h

1
"93 and

14)83 due to the grazing transmitted P1- and P2-waves. In addition, the pSV
R,SV

pro"le
changes its value dramatically at 33)93 for 30 Hz, 26 and 423 for 1 kHz, and 22 and 483 for
30 kHz, which are called Rayleigh-wood anomalies [16] due to the grazing transmitted S4-
and S5-waves (see the left column plotted in Figure 9). It means that the S4- and S5-waves
become an evanescent wave and decay exponentially into the interior half-space. The
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phenomenon leads to a redistribution of the power densities of the re#ected and transmitted
plane waves that are still propagating. Consequently, the pSV

R,SV
pro"les seem to reach the

maximum, respectively, right after the Rayleigh-wood anomalies. This simply means that
more energy goes into the re#ected SV-wave. In view of the case of incident SV-wave, due to
the chirality in medium 2, the existence of SH-waves is observed. This important
phenomenon does not appear in the classic elastic solid. Note that the pSV

R,SH
at 1 kHz is the

largest among the three cases in Figure 8. Also, the transmitted transverse waves display the
same phenomena shown in Figure 4, i.e., below the "rst transition frequency, the S4- and
S5-waves have similar wavenumbers and hence the pSV

T,S4
and pSV

T,S5
simultaneously possess

similar powers. In between the "rst and second transition frequencies, the four circularly
transverse waves are evidently distinguished, which induce the variable power-density
pro"les in it. When the frequency is higher than the second transition frequency, the S3-, S4-
and S5-, S6-waves would degenerate into the new transverse waves, which implies the
similar power densities pSV

T,S3
, pSV

T,S4
and pSV

T,S5
, pSV

T,S6
, respectively. Moreover, the grazing

angles of S4- and S5-waves in Figures 9(a) and 9(b) would induce the redistribution of the
re#ected power densities. Hence the pSV

R,SH
has the maximum if one of the Rayleigh-wood

anomalies due to the evanescent S4- and S5-waves occurs.
Figure 10 plots the power density of the re#ected and transmitted "elds for an obliquely

incident SV-wave. The boundary conditions B are considered in this calculation. The "rst
and second quadrants of the plots on the left denote the incident and re#ected shear waves,
the fourth quadrant of the plots on the left represents the transmitted transverse waves, the
"rst quadrant of the plots on the right is the re#ected longitudinal wave, and the fourth
quadrant of the plots on the right describes the transmitted longitudinal waves. In Figure
10, the re#ected and transmitted longitudinal "elds are similar to Figures 8 and 9, except
that the pSV

T,PZ
pro"les are di!erent. Moreover, the SH-wave, according to the mode

conversion of the chirality, again appears in this case. Identical to the conclusion mentioned
in Figure 9(b), the power density pSV

T,SH
is again superior at a frequency of 1 kHz. These

numerical results also indicate that the use of boundary conditions B obtains a greater e!ect
of chirality than the use of boundary conditions A (see the pro"les of pSV

T,SH
shown in Figures

9(b) and 10(b)). Although the two types of boundary conditions, A and B, always display
variable numerical computations, they are in agreement with the principle of conservation
of energy. The consequence of using either boundary conditions A or B is confusing because
only one of the boundary conditions A or B is speci"ed at a point on the interface in all
physical problems [17]. Aero et al. [5], in a study on the continuum theory of asymmetric
elasticity, indicate that when the two semi-in"nite media are in contact and no interaction
exists between the particles at the boundary zone, it is natural to assume the continuity of
the microrotation. They also reported that the free energy of the chiral solid must reach
a minimum when it is in a state of stable dynamic equilibrium. Accordingly, the boundary
conditions A are a better choice than conditions B among the "rst and second transition
frequencies, and will be used in the following analysis.

To further illustrate the e!ects of the chirality, the chiral half-space is replaced by an
isotropic (achiral) material. The transmitted "eld hence contains only three material
constants Mj

2
, k

2
, o

2
N listed in Table 1, and the numerical results are plotted in Figure 11.

When compared with Figures 8}10, it is clear that the existence of the chirality in medium
2 would instigate a reducible power density pSV

R,SV
. Hence, the largest discrepancy in the

achiral}achiral and achiral}chiral cases may occur at 1 kHz, or at any frequencies lying
between the "rst and second transition frequencies.

Since the value of C
3

leads to a distinct phenomenon of chirality [2], the variety of C
3

is
another interesting issue in this analysis. Shown in Figure 12 is the power-density pro"les of
the two cases: (a) C

3
"4]106 N/m and (b) C

3
"35]106 N/m respectively. Since the



Figure 10. The normalized power densities of the incident SV-wave at the achiral}chiral boundary. The
boundary conditions B are used for: (a) 30 Hz, (b) 1 kHz, (c) 30 kHz. Left column: **, pSV

R,SV
; - - -, pSV

R,SH
; }} ) },

pSV
T,S3

; } ) } , pSV
T,S4

; } ) ) } , pSV
T,S5

; }2} , pSV
T,S6

. Right column: } )} , pSV
R,P

; - - - , pSV
T,P1

; } ) } , pSV
T,P2

.
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Figure 11. The normalized power densities of the incident SV-wave in elastic solid against achiral medium that
the properties used are only the o

2
, j

2
, and k

2
in Table 1. **, pSV

R,SV
; - - - , pSV

T,SV
; } ) } , pSV

R,P
; }2} , pSV

T,P
.
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in#uence of chirality on medium 2 is enhanced at 1 kHz, these "gures are all plotted based
on the calculation using this frequency. It is observed that the re#ected "eld in Figure 12(a)
is similar to the achiral}achiral case (shown in Figure 11). This reveals the general
insensitivity of pSV

R,P
and pSV

R,SV
to the chiral parameter C

3
if the value of C

3
is small. Also, the

numerical results indicate that the trend of the power density pSV
T,S5

and pSV
T,S6

is similar in the
fourth quadrant of the plot on the left-hand side that simultaneously possesses the major
power density in the transmitted "eld. When C

3
increases, e.g., C

3
"26]106 N/m, the

pSV
R,SH

is smaller but expands to a wider region when compared to Figures 8(b) and 10(b).
Hence, only a suitable choice of C

3
can induce a better chiral e!ect on the chiral medium.

The re#ected and transmitted phenomena of the incident SH-wave at the achiral}chiral
interface are plotted in Figure 13. Again, it is interesting to observe the existence of P- and
SV-waves due to the e!ect of chirality. The numerical analysis also indicates that the value
of pSV

R,SV
is the largest at 1 kHz among the three speci"c frequencies (the cases of 30 Hz and

30 kHz are not shown in this "gure). We then concluded that, when the frequency of the
incident wave lies in the frequency range where four circularly polarized shear waves are
found, the conversion of the power density due to the mode conversion is the largest.
Consequently, the P-, SV-, and SH-waves are coupled together and should be considered in
the wave propagation at the achiral}chiral interface.

Until now, only the linear polarized incident plane wave is discussed. From Figures 3 and
4, it is known that the normally incident SV-wave may re#ect an SV-wave in the zone of
z(0 from the achiral}chiral interface. Consequently, the re#ected SH-wave is absent;
therefore, there is no mode conversion from the achiral}chiral interface in this case. To
study the behavior of chirality in detail, we now consider either a normally incident RCP or
LCP plane wave at the interface z"0. It will be appropriate to express the incident "eld by
the forms

(1) RCP plane wave:

tI
1
"i, tI

2
"1; (60)

(2) LCP plane wave:

tI
1
"!i, tI

2
"1. (61)



Figure 12. The normalized power densities of the incident SV-wave at achiral}chiral interface for (a)
C

3
"3]106 N/m or (b) C

3
"26]106 N/m. Left column: **, pSV

R,SV
; - - -, pSV

R,SH
; } } ) }, pSV

T,S3
; } ) } , pSV

T,S4
; } ) ) } ,

pSV
T,S5

; }2} , pSV
T,S6

. Right column: **, pSV
R,P

; - - -, pSV
T,P1

; } ) }, pSV
T,P2

.
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The solution of the boundary value problem is plotted in Figure 14. Figure 14 indicates that
if the incident plane wave is RCP, then the transmitted waves are also RCP. However, to
satisfy the boundary conditions, the re#ected wave must be LCP. The result is also true for the
incident LCP plane wave that it generates a re#ected RCP plane wave and two transmitted
LCP plane waves from the achiral}chiral interface. Therefore, we conclude that the re#ected
"eld of the chiral medium is linearly polarized for a normally incident, linearly polarized wave;
whereas the normally incident, circularly polarized wave cause a re#ected wave with circular
polarization along the z axis but oscillates in the reverse direction of rotation.

7. CONCLUSIONS

A theoretical analysis has been conducted in detail to understand the phenomena of the
transverse wave propagating at the achiral}chiral interface. Using a series of wave
equations and the appropriate boundary conditions, the re#ected and transmitted



Figure 13. The normalized power densities of the incident SH-wave at the achiral}chiral boundary for 1 kHz.
Left column:**, pSH

R,SH
; - - -, pSH

R,SV
; } } ) , pSH

T,S3
; } ) } , pSH

T,S4
; } ) ) } , pSH

T,S5
; }2} , pSH

T,S6
. Right column:**, pSH
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; - - -,

pSH
T,P1

; } ) }, pSH
T,P2

.

Figure 14. Field represents for the normal incidences: (a) RCP plane wave, (b) LCP plane wave.
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characteristics can be solved numerically, and the solutions are in agreement with the
principle of conservation of energy. The results have shown that for a normally incident,
linearly polarized shear wave, there is no mode conversion due to the handedness of the
chiral property. It means that an incident SV-wave will generate a re#ected SV-wave as well
as four transverse waves, i.e., S3- to S6-waves, whereas the longitudinal waves would
disappear in this case. Also, the coupled transverse waves (RCP and LCP) propagating in
the chiral medium may degenerate to a linearly transverse wave oscillating along a unique
direction. If the oblique incidence is concerned, the re#ected and transmitted power
densities are shown in the polar diagrams at 30 Hz, 1 kHz, and 30 kHz respectively. We
then concluded that the P- SV-, and SH-waves are coupled together due to the existence of
chirality, and simultaneously, the phenomenon is particularly enhanced between the "rst
and second transition frequencies.
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